The Laws of Logarithms

These notes are intended as a summary of section 5.5 (p. 388 - 392) in your workbook. You should also read the section for more complete explanations and additional examples.

Using your calculator, verify that each of the following equalities is true:

$$
\begin{aligned}
& \log 2+\log 3=\log 6 \\
& \log 8-\log 2=\log 4 \\
& 3 \log 2=\log 8
\end{aligned}
$$

These three equalities can be generalized to form the three laws of logarithms.

The Product Law

$$
\log _{a}(M N)=\log _{a} M+\log _{a} N \quad\left\{\begin{array}{c}
M>0 \\
N>0
\end{array}\right.
$$

Proof

The Quotient Law
$\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \quad\left\{\begin{array}{c}M>0 \\ N>0\end{array}\right.$

Proof

The Power Law
$\log _{a}\left(M^{n}\right)=n \log _{a} M \quad\left\{\begin{array}{c}M>0 \\ n>0\end{array}\right.$
Proof

Example 1 (sidebar p. 390)

Simplify each expression. Use a calculator to verify the answer.
a) $\log 7+\log 8$
b) $5 \log 2$
c) $\log 80-\log 16$

Example 2 (sidebar p. 390)
Write each expression as a single logarithm.
a) $\log x+3 \log y$
b) $\log x+2 \log y-4 \log z$
c) $\log _{2} 6-3$

Example 3 (sidebar p. 391)

Write each expression in terms of $\log a, \log b$, and/or $\log c$.
a) $\log \left(\frac{a}{b^{2}}\right)$
b) $\log \left(\frac{a^{2} b^{\frac{1}{3}}}{c}\right)$

Example 4 (sidebar p. 392)
Evaluate each expression.
a) $3 \log _{9} 6-\log _{9} 72$
b) $2 \log _{4} 6-3 \log _{4} 3+\log _{4} 12$

Change of Base Formula

To use the LOG key on your calculator to evaluate a logarithm with base other than 10 , the base of the logarithm must be changed to 10 . This is accomplished using the change of base formula:
$\log _{b} x=\frac{\log _{a} x}{\log _{a} b} \quad\left\{\begin{array}{c}a, b, x>0 \\ a, b \neq 1\end{array}\right.$

Proof

Example (not in workbook)

Evaluate each logarithm.
a) $\log _{2} 3$
b) $\log _{7} 3614$
c) $\log _{6} 423$

Homework: \#4, 5, 8, $11-16,18$ in the section 5.5 exercises (p. 393-398). Answers on p. 399. \#3-5 in the section 5.6 exercises (p. $405-410$). Answers on p. 411.

